metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Polv[bis[3,10-bis(2-hydroxyethyl)-1.3.5.8.10.12-hexaazacvclotetradecane]tetra-*µ*-cyanido-tetracyanidodicopper(II)molybdenum(IV)] tetrahydrate]

Hu Zhou, Ying-Ying Chen, Wen-Yan Liu and Ai-Hua Yuan*

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China Correspondence e-mail: aihuayuan@163.com

Received 11 October 2008; accepted 4 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.043; wR factor = 0.103; data-toparameter ratio = 18.5.

In the title complex, $\{[Cu_2Mo(CN)_8(C_{12}H_{30}N_6O_2)_2]\cdot 4H_2O\}_n$ the polyhedron around Mo has site symmetry $\overline{1}$ with a distorted square-antiprismatic shape, while the Cu atom (2 symmetry) is in a distorted axially elongated octahedral coordination environment. The uncoordinated water molecule is disordered over three sites with occupancies of 0.445 (7), 0.340 (7) and 0.215 (7). Mo and Cu atoms acting as basic components are connected by an Mo-CN-Cu-NC-Molinkage to form a distorted diamond-like network. Additional hydrogen bonding between the N-H groups and the water molecules stabilizes this arrangement.

Related literature

For background information, see: Larionova et al. (2004); Przychodzeń et al. (2006). For related structures, see: Chen et al. (2007); Zhou et al. (2007; 2008). For literature related to the synthesis, see: Suh & Kang (1988); Leipoldt et al. (1974).

Experimental

Crystal data

[Cu2Mo(CN)8(C12H30N6O2)2]·4H2O $M_r = 1084.08$ Tetragonal, $I4_1/a$ a = 20.0707 (10) Åc = 15.4380 (17) Å V = 6218.9 (8) Å³

Data collection

Bruker SMART APEXII 16289 measured reflections diffractometer 3053 independent reflections Absorption correction: multi-scan 2459 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.058$ (SADABS; Bruker, 2002) $T_{\rm min} = 0.75, T_{\rm max} = 0.79$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	1 restraint
$wR(F^2) = 0.103$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
3053 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$
165 parameters	

Z = 4

Mo $K\alpha$ radiation $\mu = 0.93 \text{ mm}^{-1}$

 $0.32 \times 0.28 \times 0.26 \text{ mm}$

T = 293 (2) K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3C \cdot \cdot \cdot N2^{i}$	0.93	2.44	3.261 (4)	147
$N5 - H5C \cdot \cdot \cdot O2^{ii}$	0.93	2.38	3.291 (8)	165
$D1 - H1C \cdots O4^{iii}$	0.85	2.48	3.149 (7)	136
$D4 - H4D \cdots N2^{iv}$	0.85	2.11	2.729 (6)	129
$O4 - H4E \cdots O2^{v}$	0.85	2.47	3.279 (9)	159
Symmetry codes:	(i) $-x + 2$,	-y + 1, -z;	(ii) $y + \frac{3}{4}, -x + \frac{3}{4}$	$-\frac{3}{4}, z - \frac{1}{4};$ (iii)

 $-y + \frac{5}{4}, x + \frac{1}{4}, -z + \frac{5}{4}$; (iv) x - 1, y, z + 1; (v) $y - \frac{1}{4}, -x + \frac{1}{4}, -z + \frac{5}{4}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work is supported by the University Natural Science Foundation of Jiangsu Province (grant No. 07KJB150030).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2114).

References

Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, Y. Y., Zhou, H., Shen, X. P., Lu, H. F. & Yuan, A. H. (2007). J. Mol. Struct. 839, 64-68.
- Larionova, J., Willemin, S., Donnadieu, B., Henner, B., Guérin, C., Gillon, B. & Goujon, A. (2004). J. Phys. Chem. Solids, 65, 677-691.
- Leipoldt, J. G., Bok, L. D. C. & Cillier, P. J. (1974). Z. Anorg. Allg. Chem. 409, 343-344
- Przychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234-2260.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Suh, M. P. & Kang, S. G. (1988). Inorg. Chem. 27, 2544-2546.

- Zhou, H., Chen, Y. Y., Yuan, A. H. & Shen, X. P. (2008). Inorg. Chem. Commun. 11. 363-366
- Zhou, H., Yuan, A. H., Shen, X. P., Chen, Y. Y., Price, D. J. & Kepert, C. J. (2007). Inorg. Chem. Commun. 10, 940-943.

Acta Cryst. (2008). E64, m1528 [doi:10.1107/S1600536808036131]

Poly[bis[3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane]tetra-#-cyanido-tetracyanidodicopper(II)molybdenum(IV)] tetrahydrate]

H. Zhou, Y.-Y. Chen, W.-Y. Liu and A.-H. Yuan

Comment

Recently, octacyanometalates $[M(CN)_8]^{3-/4-}$ (M = Mo, W and Nb) have been found to be versatile building blocks and investigated extensively (Larionova *et al.*, 2004; Przychodzeń *et al.*, 2006). For $[CuL]^{2+}/[M(CN)_8]^{3-/4-}$ (L = macrocyclic ligands) bimetallic systems, macrocyclic ligands block partly coordination sites of the metal ions and release their apical ones, which can be used to construct cyano-bridged bimetallic complexes with octacyanometalate $[M(CN)_8]^{3-/4-}$ ions. In a recent study, we chose $[CuL]^{2+}$ (L = 3,10-diethanol-1,3,5,8,10,12-hexaazacyclotetradecane) as building block to synthesize successfully an octacyanometalate-based bimetallic complex $[CuL]_2[Mo(CN)_8].4H_2O$, (I), with a distorted diamond network.

The title complex crystallizes in the tetragonal $(I4_1/a)$ space group. As displayed in Fig. 1, the Mo atom is coordinated by eight CN groups in a distorted square antiprism. The Cu atom is in a distorted axially elongated octahedral coordination environment, in which four nitrogen atoms from the ligand (*L*) occupy the equatorial positions, while the axial sites are occupied by two nitrogen atoms from the bridging cyanide groups on different [Mo(CN)₈]⁴⁻ anions. The bonding parameters of the macrocyclic ligand *L* are reminiscent of those found in related complexes reported previously (Chen *et al.*, 2007).

As shown in Fig. 2, Mo and Cu atoms acting as basic components (linker and connector, respectively) are connected by the Mo—CN—Cu—NC—Mo— linkages to form a three-dimensional structure. The network is composed of $[CuL]^{2+}$ unit that is linked *via* cyanides to adjacent four-connected $[Mo(CN)_8(\mu-CN)_4]^{4-}$ centers. From a topological standpoint, each $[Mo(CN)_8]$ unit is a tetrahedral four-connecting node. These nodes are linked to four adjacent $[Mo(CN)_8]$ units by the [CuL] units, acting as linear two-connectors. The result is a distorted diamond network (Fig. 2), which is similar to octacyanometalate-based bimetallic complexes reported previously (Zhou *et al.*, 2007; 2008).

Experimental

Well shaped brown crystals of the title complex suitable for X-ray single-crystal structure determination were grown at room temperature by slow diffusion of a DMF solution (15 ml) of $[CuL](ClO_4)_2$ (0.30 mmol) (Suh and Kang, 1988) and an aqueous solution (15 ml) of K₄[Mo(CN)₈].2H₂O (0.15 mmol) (Leipoldt *et al.*, 1974) in a U-shaped tube containing agar for about one month. The resulting crystals were collected, washed with H₂O and dried in air.

Refinement

All hydrogen atoms except for hydrogen atoms bound to water molecules were calculated at idealized positions with C–H = 0.99, N–H = 0.93 and O–H = 0.85 Å and included in the refinement in a riding mode with U_{iso} for H assigned as 1.2 times U_{eq} of the attached atoms. The O atom of the water of hydration molecule was disordered over three sites with unequal site

occupancy factors at locations O2, O3 and O4. The H atoms of the disordered water molecule were located from difference maps and were included in the refinements at geometrically idealized positions with O–H distances 0.85 Å and U_{iso} assigned as 1.2 times U_{eq} of the attached O atoms.

Figures

Fig. 1. *ORTEP* drawing of the title complex, showing the atom labeling. Hydrogen atoms and water molecules are omitted for clarity. Symmetry codes: A: 2-x, 1-y, -z; B: 2-x, 0.5-y, z; C: 1.25-y, -0.75+x, 0.25-z.

Fig. 2. Topological depiction of the title complex, where the Mo nodes and the Cu connectors are shown in pink and green colors, respectively.

$\label{eq:poly} Poly[[bis[3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane]tetra- \mu-cyanidotetracyanidodicopper(II)molybdenum(IV)] tetrahydrate]$

Crystal data

-	
$[Cu_2Mo(CN)_8(C_{12}H_{30}N_6O_2)_2]$ ·4H ₂ O	Z = 4
$M_r = 1084.08$	$F_{000} = 2256$
Tetragonal, $I4_1/a$	$D_{\rm x} = 1.158 {\rm ~Mg~m}^{-3}$
Hall symbol: -I 4ad	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 20.0707 (10) Å	Cell parameters from 3093 reflections
b = 20.0707 (10) Å	$\theta = 2.6 - 21.2^{\circ}$
c = 15.4380 (17) Å	$\mu = 0.93 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 293 (2) K
$\beta = 90^{\circ}$	Block, brown
$\gamma = 90^{\circ}$	$0.32 \times 0.28 \times 0.26 \text{ mm}$
$V = 6218.9 (8) \text{ Å}^3$	

Data collection

Bruker SMART APEXII diffractometer	3053 independent reflections
Radiation source: sealed tube	2459 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
phi and ω scans	$\theta_{\min} = 1.7^{\circ}$

Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -24 \rightarrow 24$
$T_{\min} = 0.75, T_{\max} = 0.79$	$k = -19 \rightarrow 24$
16289 measured reflections	$l = -16 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.103$	$w = 1/[\sigma^2(F_o^2) + (0.0515P)^2 + 3.1936P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3053 reflections	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
165 parameters	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.96688 (13)	0.34611 (15)	0.08263 (19)	0.0392 (6)	
C2	1.06251 (16)	0.27104 (17)	0.0121 (2)	0.0485 (7)	
C3	0.86789 (19)	0.5451 (2)	0.0135 (2)	0.0615 (9)	
H3A	0.8364	0.5817	0.0269	0.074*	
H3B	0.8476	0.5025	0.0322	0.074*	
C4	0.92199 (19)	0.5426 (2)	0.1513 (2)	0.0610 (9)	
H4A	0.8863	0.5716	0.1746	0.073*	
H4B	0.9081	0.4957	0.1597	0.073*	
C5	1.0360 (2)	0.5073 (2)	0.1850 (2)	0.0627 (10)	
H5A	1.0195	0.4618	0.1971	0.075*	
H5B	1.0715	0.5172	0.2277	0.075*	
C6	1.1181 (2)	0.4567 (2)	0.0813 (2)	0.0649 (10)	
H6A	1.1023	0.4126	0.1013	0.078*	

H6B	1.1591	0.4682	0.1137	0.078*	
C7	0.99694 (18)	0.62268 (18)	0.2106 (2)	0.0570 (9)	
H7A	0.9623	0.6491	0.1805	0.068*	
H7B	1.0397	0.6317	0.1808	0.068*	
C8	1.0028 (2)	0.6495 (2)	0.3018 (3)	0.0694 (11)	
H8A	1.0505	0.6519	0.3175	0.083*	
H8B	0.9848	0.6954	0.3030	0.083*	
Cu2	1.0000	0.5000	0.0000	0.04929 (18)	
Mo1	1.0000	0.2500	0.1250	0.03165 (14)	
N1	0.94948 (13)	0.39753 (13)	0.05790 (17)	0.0467 (6)	
N2	1.09533 (14)	0.28414 (15)	-0.04505 (19)	0.0554 (7)	
N3	0.92993 (13)	0.55566 (15)	0.05812 (19)	0.0539 (7)	
H3C	0.9417	0.6002	0.0514	0.065*	
N4	0.98158 (17)	0.55421 (16)	0.1980 (3)	0.0737 (9)	
N5	1.06603 (14)	0.50813 (15)	0.09613 (16)	0.0500 (7)	
H5C	1.0866	0.5493	0.0896	0.060*	
01	0.9722 (2)	0.6148 (2)	0.3594 (3)	0.1107 (12)	
H1C	0.9917	0.5774	0.3651	0.133*	
O2	0.1088 (4)	0.4119 (4)	0.3446 (5)	0.072 (3)	0.340 (7)
H2A	0.0857	0.4473	0.3454	0.087*	0.340 (7)
H2B	0.0994	0.3893	0.3896	0.087*	0.340 (7)
O3	0.2794 (8)	0.5343 (7)	0.0656 (10)	0.088 (6)	0.215 (7)
H3D	0.2957	0.5708	0.0836	0.105*	0.215 (7)
H3E	0.3107	0.5076	0.0526	0.105*	0.215 (7)
O4	0.2103 (3)	0.2935 (3)	0.8613 (3)	0.065 (2)	0.445 (7)
H4D	0.1814	0.3166	0.8882	0.078*	0.445 (7)
H4E	0.1970	0.2534	0.8577	0.078*	0.445 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0211 (12)	0.0461 (17)	0.0503 (17)	0.0025 (11)	-0.0005 (11)	0.0068 (13)
C2	0.0437 (17)	0.0534 (19)	0.0485 (18)	-0.0006 (14)	0.0066 (14)	-0.0020 (15)
C3	0.058 (2)	0.064 (2)	0.063 (2)	-0.0125 (18)	-0.0127 (17)	0.0055 (18)
C4	0.058 (2)	0.083 (3)	0.0428 (19)	-0.0050 (19)	0.0110 (15)	0.0042 (17)
C5	0.068 (2)	0.079 (3)	0.0419 (18)	0.0000 (19)	-0.0184 (17)	-0.0064 (17)
C6	0.072 (2)	0.079 (3)	0.044 (2)	-0.007 (2)	-0.0283 (18)	0.0000 (17)
C7	0.060 (2)	0.056 (2)	0.0550 (19)	-0.0147 (16)	0.0152 (16)	-0.0383 (16)
C8	0.071 (2)	0.068 (2)	0.069 (3)	-0.003 (2)	0.019 (2)	-0.024 (2)
Cu2	0.0514 (3)	0.0560 (3)	0.0405 (3)	-0.0020 (3)	-0.0059 (2)	0.0008 (2)
Mo1	0.01805 (15)	0.01805 (15)	0.0589 (3)	0.000	0.000	0.000
N1	0.0459 (14)	0.0452 (14)	0.0490 (15)	0.0031 (11)	-0.0036 (12)	0.0120 (12)
N2	0.0549 (17)	0.0586 (17)	0.0528 (17)	-0.0083 (14)	0.0019 (14)	0.0287 (14)
N3	0.0405 (14)	0.0671 (18)	0.0540 (16)	0.0017 (13)	0.0018 (12)	0.0123 (14)
N4	0.071 (2)	0.0478 (18)	0.103 (3)	-0.0030 (15)	0.018 (2)	-0.0012 (17)
N5	0.0521 (16)	0.0572 (17)	0.0406 (14)	0.0061 (13)	-0.0163 (12)	-0.0079 (12)
01	0.115 (3)	0.113 (3)	0.104 (3)	0.004 (2)	0.011 (2)	0.006 (2)
O2	0.060 (5)	0.092 (6)	0.065 (5)	0.023 (4)	-0.024 (4)	-0.028 (4)

03	0.097 (11)	0.063 (8)	0.103 (11)	-0.006 (7)	0.041 (9)	-0.006 (8)
04	0.064 (4)	0.091 (5)	0.041 (3)	-0.014 (3)	0.016 (2)	0.009 (3)
Geometric param	neters (Å, °)					
C1—N1		1.154 (4)	C8	3—01		1.285 (5)
C1—Mo1		2.143 (3)	C8	3—H8A		0.9900
C2—N2		1.132 (4)	C8	3—H8B		0.9900
C2—Mo1		2.188 (3)	Cu	$12-N5^{i}$		1.996 (2)
C3—N3		1.439 (4)	Cu	12—N5		1.996 (2)
C3—C6 ⁱ		1.490 (5)	Cu	12—N3		2.008 (3)
С3—НЗА		0.9900	Cu	12—N3 ⁱ		2.008 (3)
C3—H3B		0.9900	Cu	$12-N1^{i}$		2.461 (3)
C4—N4		1.416 (5)	Cu	12—N1		2.461 (3)
C4—N3		1.470 (5)	M	o1—C1 ⁱⁱ		2.143 (3)
C4—H4A		0.9900	M	o1—C1 ⁱⁱⁱ		2.143 (3)
C4—H4B		0.9900	M	o1—C1 ^{iv}		2.143 (3)
C5—N4		1.457 (5)	M	o1—C2 ⁱⁱⁱ		2.188 (3)
C5—N5		1.499 (5)	M	o1—C2 ^{iv}		2.188 (3)
C5—H5A		0.9900	M	o1—C2 ⁱⁱ		2.188 (3)
С5—Н5В		0.9900	N3	3—НЗС		0.9300
C6—N5		1.487 (5)	NS	5—Н5С		0.9300
C6—C3 ⁱ		1.490 (5)	01	I—H1C		0.8501
С6—Н6А		0.9900	02	2—H2A		0.8500
C6—H6B		0.9900	02	2—H2B		0.8500
C7—N4		1.422 (4)	03	3—H3D		0.8500
С7—С8		1.512 (5)	03	3—Н3Е		0.8500
С7—Н7А		0.9900	04	1—H4D		0.8498
С/—Н/В		0.9900	04	I—H4E		0.8498
N1—C1—Mo1		178.4 (3)	N3	3 ¹ —Cu2—N1		89.19 (10)
N2—C2—Mo1		177.5 (3)	NI	l ¹ —Cu2—N1		180.00 (11)
N3—C3—C6 ⁱ		108.1 (3)	C1	ⁱⁱ —Mo1—C1 ⁱⁱⁱ		95.35 (5)
N3—C3—H3A		110.1	C1	ii—Mo1—C1		144.45 (16)
C6 ⁱ —C3—H3A		110.1	C1	ⁱⁱⁱ —Mo1—C1		95.35 (5)
N3—C3—H3B		110.1	Cl	ⁱⁱ —Mo1—C1 ^{iv}		95.35 (5)
C6 ⁱ —C3—H3B		110.1	C1	iii—Mo1—C1 ^{iv}		144.45 (16)
НЗА—СЗ—НЗВ		108.4	C1	-Mo1-C1 ^{iv}		95.35 (5)
N4—C4—N3		112.2 (3)	C1	ⁱⁱ —Mo1—C2 ⁱⁱⁱ		145.00 (12)
N4—C4—H4A		109.2	Cl	ⁱⁱⁱ —Mo1—C2 ⁱⁱⁱ		76.18 (12)
N3—C4—H4A		109.2	C1	—Mo1—C2 ⁱⁱⁱ		70.56 (12)
N4—C4—H4B		109.2	C1	^{iv} —Mo1—C2 ⁱⁱⁱ		75.69 (12)
N3—C4—H4B		109.2	C1	ⁱⁱ —Mo1—C2 ^{iv}		70.56 (12)
H4A—C4—H4B		107.9	C1	iii—Mo1—C2 ^{iv}		75.69 (12)
N4—C5—N5		114.8 (3)	Cl	-Mo1-C2 ^{iv}		144.99 (12)

N4—C5—H5A	108.6	C1 ^{iv} —Mo1—C2 ^{iv}	76.18 (12)
N5—C5—H5A	108.6	C2 ⁱⁱⁱ —Mo1—C2 ^{iv}	74.44 (17)
N4—C5—H5B	108.6	C1 ⁱⁱ —Mo1—C2	75.69 (12)
N5—C5—H5B	108.6	C1 ⁱⁱⁱ —Mo1—C2	144.99 (12)
H5A—C5—H5B	107.5	C1—Mo1—C2	76.17 (12)
N5—C6—C3 ⁱ	107.5 (3)	C1 ^{iv} —Mo1—C2	70.55 (12)
N5—C6—H6A	110.2	C2 ⁱⁱⁱ —Mo1—C2	129.35 (11)
C3 ⁱ —C6—H6A	110.2	$C2^{iv}$ —Mo1—C2	129.35 (11)
N5-C6-H6B	110.2	$C1^{ii}$ —Mo1— $C2^{ii}$	76.17 (12)
C3 ⁱ —C6—H6B	110.2	$C1^{iii}$ —Mo1— $C2^{ii}$	70 55 (12)
Нба—Сб—НбВ	108.5	$C1 - Mo1 - C2^{ii}$	75 69 (12)
N4 C7 C8	110.2 (4)	$C_1 = M_0 I_1 = C_2$	144.00(12)
N4 C7 U7A	119.2 (4)		144.99(12)
	107.5	C2 ^m —Mo1—C2 ⁿ	129.36 (11)
С8—С7—Н7А	107.5	$C2^{IV}$ —Mo1— $C2^{II}$	129.35 (11)
N4—C7—H7B	107.5	$C2-Mo1-C2^{11}$	74.44 (17)
C8—C7—H7B	107.5	C1—N1—Cu2	137.9 (2)
H7A—C7—H7B	107.0	C3—N3—C4	110.4 (3)
01-C8-C7	114.5 (4)	C3—N3—Cu2	108.1 (2)
01—C8—H8A	108.6	C4—N3—Cu2	114.4 (2)
C/C8H8A	108.6	$C_3 = N_3 = H_3 C_3$	107.9
01—C8—H8B	108.6	C4 - N3 - H3C	107.9
	108.6	$Cu_2 = N_3 = H_3C$	107.9
н8А—С8—Н8В	107.6	C4—N4—C/	114.3 (3)
N5'-Cu2-N5	180.0	C4—N4—C5	117.2 (3)
N5 ¹ —Cu2—N3	84.99 (12)	C7—N4—C5	118.8 (3)
N5—Cu2—N3	95.01 (12)	C6—N5—C5	114.6 (3)
$N5^{1}$ —Cu2—N 3^{1}	95.01 (12)	C6—N5—Cu2	107.20 (19)
$N5$ — $Cu2$ — $N3^{i}$	84.99 (12)	C5—N5—Cu2	114.4 (2)
N3—Cu2—N3 ⁱ	180.0	C6—N5—H5C	106.7
$N5^{i}$ —Cu2—N1 ⁱ	94.12 (11)	C5—N5—H5C	106.7
N5—Cu2—N1 ⁱ	85.88 (11)	Cu2—N5—H5C	106.7
N3—Cu2—N1 ⁱ	89.19 (10)	C8—O1—H1C	109.3
N3 ⁱ —Cu2—N1 ⁱ	90.81 (10)	H2A—O2—H2B	108.2
N5 ⁱ —Cu2—N1	85.88 (11)	H3D—O3—H3E	109.5
N5—Cu2—N1	94.12 (11)	H4D—O4—H4E	109.5
N3—Cu2—N1	90.81 (10)		
N4—C7—C8—O1	-22.2 (6)	N3—C4—N4—C5	-70.7 (4)
N5 ⁱ —Cu2—N1—C1	129.7 (4)	C8—C7—N4—C4	120.0 (4)
N5—Cu2—N1—C1	-50.3 (4)	C8—C7—N4—C5	-94.9 (4)
N3—Cu2—N1—C1	-145.4 (4)	N5-C5-N4-C4	66.8 (4)
N3 ⁱ —Cu2—N1—C1	34.6 (4)	N5—C5—N4—C7	-77.3 (4)
C6 ⁱ —C3—N3—C4	-166.9 (3)	C3 ⁱ —C6—N5—C5	168.3 (3)
C6 ⁱ —C3—N3—Cu2	-41.1 (3)	C3 ⁱ —C6—N5—Cu2	40.2 (3)

N4—C4—N3—C3	-178.4 (3)	N4—C5—N5—C6	-175.7 (3)
N4—C4—N3—Cu2	59.5 (4)	N4—C5—N5—Cu2	-51.3 (4)
N5 ⁱ —Cu2—N3—C3	14.8 (2)	N3—Cu2—N5—C6	165.6 (2)
N5—Cu2—N3—C3	-165.2 (2)	N3 ⁱ —Cu2—N5—C6	-14.4 (2)
N1 ⁱ —Cu2—N3—C3	109.0 (2)	N1 ⁱ —Cu2—N5—C6	-105.5 (2)
N1—Cu2—N3—C3	-71.0 (2)	N1—Cu2—N5—C6	74.5 (2)
N5 ⁱ —Cu2—N3—C4	138.2 (3)	N3—Cu2—N5—C5	37.4 (3)
N5—Cu2—N3—C4	-41.8 (3)	N3 ⁱ —Cu2—N5—C5	-142.6 (3)
N1 ⁱ —Cu2—N3—C4	-127.6 (2)	N1 ⁱ —Cu2—N5—C5	126.3 (3)
N1—Cu2—N3—C4	52.4 (2)	N1—Cu2—N5—C5	-53.7 (3)
N3-C4-N4-C7	75.0 (4)		

Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+1/2, z; (iii) -y+5/4, x-3/4, -z+1/4; (iv) y+3/4, -x+5/4, -z+1/4.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H3C···N2 ⁱ	0.93	2.44	3.261 (4)	147
N5—H5C····O2 ^v	0.93	2.38	3.291 (8)	165
O1—H1C···O4 ^{vi}	0.85	2.48	3.149 (7)	136
O4—H4D····N2 ^{vii}	0.85	2.11	2.729 (6)	129
O4—H4E····O2 ^{viii}	0.85	2.47	3.279 (9)	159
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$; (v) $y+3/4$, $-x+3/4$, $z-1/4$; (vi) $-y+5/4$, $x+1/4$, $-z+5/4$; (vii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viiii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$, $-z+5/4$; (viii) $x-1$, y , $z+1$; (viii) $y-1/4$, $-x+1/4$; (viii) $x-1$, y , $x+1$; (viii) $x-1$, y , $x+1$; (viii) $x-1$, y , $x+1$; (viii) $x-1$; (
4.				

Fig. 2